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A relat ion is der ived for determining the mass  flow ra te  of coolant, depending on the loca-  
tion of the phase- t rans i t ion  zone and as a function of the physical  proper t ies  of the sys tem.  

The feasibility of transpiration cooling with a liquid which changes phase inside the wall has recently 
received much attention from researchers [1, 2], on account of the obvious advantages over such cooling 
with a gas. It is not possible in practice, however, to ensure a constant flow rate of coolant when the 
phase-transition zone [1] or the beginning of it [2] moves, because then the hydraulic drag of the porous 
plate changes. The phenomenon of the drag increasing during phase transition, quite well known in the 
case of the flow of boiling water through pipes [3], has been discovered only recently [4] in the case of fil- 
tration through porous bodies. Producing the necessary pressure drop appears a logical and the only pos- 
sible condition for establishing the flow rate of coolant through a porous wall. 

The problem is depicted schematically in Fig. i. A constant pressure drop P0-Pl > 0 drives a liquid 
through a flat homogeneous plate whose y and z dimensions are much larger than its thickness 5. The 
state of the liquid changes while the latter flows through this plate: it evaporates within a thin layer x = L, 
if the outer thermal flux density q is sufficiently high. The problem is to determine how the coolant flow 
rate varies depending on the location of the evaporation zone inside the plate. The steady-state one-dimen- 
sional flow of liquid through a porous medium is described by the semiempirical equation [5]: 

_ d__~p = cz~G ~_ ~_~_G~ ' (I) 
dx p p 

where G denotes the mass  flow rate of f i l t rat ing liquid and a ,  ~ denote the coefficients of viscous and 
inert ial  drag,  respect ively .  The second te rm on the r ight-hand side r ep resen t s  the depar ture  f rom Darcy ' s  
law at higher  velocit ies,  this depar ture  being due to inertia effects in a porous body, i . e . ,  in a multitude 
of curvi l inear  channels with variable c ro s s  sect ions.  

Fig.  1. Physica l  dia-  
g ram of the problem.  

The continuity equation for steady flow 

d__q_C = 0 (2) 
dx 

indicates a constant flow rate at any c ross  section: 

G (x) = const. ~ (3) 

Integrat ing express ion (1) separa te ly  for the liquid zone and the vapor zone 
over  the entire plate, we obtain 

L 6 L 

P o - -  Pl aG " ~t (x) dx -~- " ~t (x) ' d x  "~ dx  
o (x) ~ (x) o (x) 

0 L 0 

The values of ~ (x) and p (x) for both zones can be found in tables, if the p r e s -  
sure  and the tempera ture  are  known at every  point in the sys tem,  i . e . ,  if the 
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TABLE 1. Physical  P rope r t i e s  of Water  and of 
Water  Vapor along the Saturation Curve 

Psat' bar 

0,1 
1 
10 
100 

~at: c 

6,f8 
99,63 

179,88 
310,96 

V2 

74,5 
73,5 
17,5 
2,94 

o_I_ 
Oi 

1,29.10 ~ 
1,69.10 a 
1,76.102 

12,8 

problem of convective heat t r ans fe r  has been solved. 
In our case we will assume,  to the f i r s t  approxima-  
tion, that the physical  proper t ies  of both liquid and 
vapor  are  constant and for their  values we will take 
those corresponding to the saturation line at a p r e s -  
sure  Psat  = (P0 + Pi)/2. Denoting the dynamic v is -  
cosi ty and the density of the liquid respect ively  by 
/~(x) =/~s and p(x) = Pt for x E [0, L], and considering 
them constant,  we rewri te  (4) f i r s t  as 

p~ , + (~- -  L) , (5) 

and then, af ter  dividing both sides by 6 and Izs/pi  = us, in a fo rm more  convenient for analysis:  

with l denoting the dimensionless  coordinate of the phase- t rans i t ion  zone. If we let l = 1 / 2 ,  then it is pos-  
sible to easi ly identify the contribution by each of the equally long zones to the total hydraulic drag: 

Po--P~ _ a 6  ( 1 +  %) ~G~ (1-~ P l  / . (7) 
6vl 2 ~ + 2~1 \ P~: 

The second t e rms  in the parentheses ,  namely,  the ra t io  of liquid and vapor kinematic viscosi t ies  and 
the rat io of liquid and vapor densi t ies ,  r epresen t ,  respect ively ,  the viscous and the inert ial  drag of the 
zone where vapor flows, re la t ive to the total respect ive  drag of the plate a t  a constant mass  flow rate  of 
coolant.  Their  o rde r  of magnitude can be es t imated f rom the tables of physical  p roper t i es  along the satu-  
rat ion line for  water  and water  vapor  [6]. 

These data point toward the predominant  role of vapor  in the total drag.  As the p re s su re  r i ses ,  the 
difference between the phases  fades until it becomes  negligible near  the cr i t ica l  point. 

We t r ans fo rm Eq. (6) fur ther ,  namely,  divide both sides by a and introduce,  for s impl ic i ty ,  the fol-  
lowing symbols:  

vl P2 6v~ 
Here G 1 signifies physical ly  the mass  flow rate  of a liquid according to Darcy.  We then obtain 

Gl --- 6m -k � 9  
~t 1 r 

Finally,  Eq. (9) is conveniently converted into a dimensionless  one with the relat ive flow rate g 
= G/G s and the lqeynolds number  Re = G1//~ 1 "/3/a : 

1 = g m  ~ g~n Re. (I 0} 

The Reynolds number  is defined here  as the rat io of the inert ial  drag force to the viscous drag force ,  
with the respect ive  coefficients in the equation yielding the charac te r i s t i c  dimension. The solution of Eq. 
(10) depends on l ,  u2 /u l ,  p l /P2 and lqe = ( p o - p t ) / 6 v l a p l  .$ /o~ .  P a r a m e t e r s  v2/Vl, P2/Ps, /Zl, and u s are  not 
independent in our formulat ion of the problem.  They are  all uniquely related to the saturation p r e s su re .  

As an example,  let us consider  the f i l t rat ion of water  through a porous plate of s tainless  steel and a 
8 = 5 mm thick with a 30% poros i ty  and the following drag coefficients [5, 7]: viscous drag a = 3.5- 1012 m 2 
and inert ial  d ragf l  = 1 .2-10  -7 m -1. The solution to Eq. (10) for the saturat ion states,  according to Table 
1, is shown in Fig.  2a, in t e rms  of the mass  flow rate  as a function of the location of the phase- t rans i t ion  
zone inside the plate.  The Reynold s number  Re = 0.1 cor responds  to the following thermal  flux density 
outside: 

( Z  : 

q ~-. Glr ~ Re lh  . r..~ Re. 10a ~ 10~W.m -2 

The most  impor tant  feature of the curves  is the rapid dec rease  in the coolant flow rate  when the boiling 
p roce s s  shifts f rom the surface deeper  into the plate.  When the outer thermal  flux and the p r e s s u r e  drop 

710 



a 

J - / 

/ J 
o,, J / 
~2 

o O,q 0,8 e 

b i 

o 0,q 0,8 t 

Fig. 2. Dimensionless  mass  flow rate of coolant, 
as a function o f  the location of the p h a s e - t r a n s i -  
tion zone: a) for  Re = 0.1 [1) Psat = 0.1 bar ;  2) 
1.0 bar ;  3) 10 bar ;  4) 100 bar] ;  b) at  Psat 
= 10 bar  [1) Re = 0 ;  2) Re =0 .1 ;  3) Re =1.0] .  
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F i g .  3. I n e r t i a l  componen t  o f  
d rag ,  as a f unc t i on  of  the l o c a -  
t ion  of the p h a s e - t r a n s i t i o n  
zone, at Psat  = t0 b a r :  1) 
Re =0 .1 ;  2) Re =1 .0 .  

a c ro s s  the plate remain  constant,  then the phase- t rans i t ion  zone can continue to penetrate  until it c lea rs  the 
wall. 

A p r e s s u r e  r i se  in the sys tem resul ts  in f la t ter  curves  with less  variat ion in the flow rate .  Such an 
effect is achieved by an increase  in the Reynolds number  at constant p roper t i es  of the coolant, as shown in 
Fig.  2b. 

The contribution by the inert ial  component to the total drag (second te rm on the r ight-hand side of 
express ion  (10)) is indicated in Fig. 3. The magnitude of the inert ial  drag does not appear  constant and 
must  be taken into account  a l ready when Re = 0.1. 
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N O T A T I O N  

is the dimensional mass  flow rate of coolant; 
is the dimensionless  mass  flow rate of coolant; 
is the thickness of a porous plate; 
is the dimensional coordinate of the phase- t rans i t ion  zone; 
is the dimensionless  coordinate of the phase- t rans i t ion  zone; 
are  the longitudinal coordinates ;  
is the outer thermal  flux density; 
are  the p r e s s u r e s  at the plate sur faces ;  
is the viscous drag coefficient; 
is the inert ial  drag coefficient; 
is the dynamic viscosi ty;  
is the kinematic viscosi ty;  
is the density; 
is ti{e saturat ion p r e s s u r e ;  
is the Reynolds number; 

are the dimensionless quantities defined by relation (8). 

S u b s c r i p t s  

1 and 2 denote the physical  p roper t i es  of liquid and vapor coolant, respect ively .  
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